在数学大师们铺平了理论道路,工程师们踏平了技术坎坷,计算机已呱呱落地的时候,人工智能终于横空出世了。而这一历史时刻的到来却是从一个不起眼的会议开始的。
1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy)、马文·闵斯基(Marvin Minsky,人工智能与认知学专家)、克劳德·香农(Claude Shannon,信息论的创始人)、艾伦·纽厄尔(Allen Newell,计算机科学家)、赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能。
会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:人工智能。因此,1956年也就成为了人工智能元年。
达特茅斯会议之后,人工智能获得了井喷式的发展,好消息接踵而至。机器定理证明——用计算机程序代替人类进行自动推理来证明数学定理——是最先取得重大突破的领域之一。在达特茅斯会议上,纽厄尔和西蒙展示了他们的程序:“逻辑理论家”可以独立证明出《数学原理》第二章的38条定理;而到了1963年,该程序已能证明该章的全部52条定理。1958年,美籍华人王浩在IBM704计算机上以3~5分钟的时间证明了《数学原理》中有关命题演算部分的全部220条定理。而就在这一年,IBM公司还研制出了平面几何的定理证明程序。
1976年,凯尼斯·阿佩尔(Kenneth Appel)和沃夫冈·哈肯(Wolfgang Haken)等人利用人工和计算机混合的方式证明了一个著名的数学猜想:四色猜想(现在称为四色定理)。这个猜想表述起来非常简单易懂:对于任意的地图,我们最少仅用四种颜色就可以染色该地图,并使得任意两个相邻的国家不会重色;然而证明起来却异常烦琐。配合着计算机超强的穷举和计算能力,阿佩尔等人把这个猜想证明了。
另一方面,机器学习领域也获得了实质的突破,在1956年的达特茅斯会议上,阿瑟·萨缪尔(Arthur Samuel)研制了一个跳棋程序,该程序具有自学习功能,可以从比赛中不断总结经验提高棋艺。1959年,该跳棋程序打败了它的设计者萨缪尔本人,过了3年后,该程序已经可以击败美国一个州的跳棋冠军。
1956年,奥利弗·萨尔夫瑞德(Oliver Selfridge)研制出第一个字符识别程序,开辟了模式识别这一新的领域。1957年,纽厄尔和西蒙等开始研究一种不依赖于具体领域的通用问题求解器,他们称之为GPS(General Problem Solver)。1963年,詹姆斯·斯拉格(James Slagle)发表了一个符号积分程序SAINT,输入一个函数的表达式,该程序就能自动输出这个函数的积分表达式。过了4年后,他们研制出了符号积分运算的升级版SIN,SIN的运算已经可以达到专家级水准。
所有这一切来得太快了,胜利冲昏了人工智能科学家们的头脑,他们开始盲目乐观起来。例如,1958年,纽厄尔和西蒙就自信满满地说,不出10年,计算机将会成为世界象棋冠军,证明重要的数学定理,谱出优美的音乐。照这样的速度发展下去,2000年人工智能就真的可以超过人类了。
然而,历史似乎故意要作弄轻狂无知的人工智能科学家们。1965年,机器定理证明领域遇到了瓶颈,计算机推了数十万步也无法证明两个连续函数之和仍是连续函数。萨缪尔的跳棋程序也没那么神气了,它停留在了州冠军的层次,无法进一步战胜世界冠军。
最糟糕的事情发生在机器翻译领域,对于人类自然语言的理解是人工智能中的硬骨头。计算机在自然语言理解与翻译过程中表现得极其差劲,一个最典型的例子就是下面这个著名的英语句子:
The spirit is willing but the flesh is weak.(心有余而力不足。)
当时,人们让机器翻译程序把这句话翻译成俄语,然后再翻译回英语以检验效果,得到的句子竟然是:
The wine is good but the meet is spoiled.(酒是好的,肉变质了。)
这简直是驴唇不对马嘴嘛。怪不得有人挖苦道,美国政府花了2000万美元为机器翻译挖掘了一座坟墓。
总而言之,越来越多的不利证据迫使政府和大学削减了人工智能的项目经费,这使得人工智能进入了寒冷的冬天。来自各方的事实证明,人工智能的发展不可能像人们早期设想的那样一帆风顺,人们必须静下心来冷静思考。
经历了短暂的挫折之后,AI研究者们开始痛定思痛。爱德华·费根鲍姆(Edward A. Feigenbaum)就是新生力量的佼佼者,他举着“知识就是力量”的大旗,很快开辟了新的道路。